Preliminary communication

The preparation and reactions of some divalent derivatives of $di-\pi$ -cyclopentadienylmolybdenum and -tungsten

F.W.S. BENFIELD, B.R. FRANCIS and M.L.H. GREEN Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (Great Britain) (Received August 15th, 1972)

SUMMARY

A convenient route is described to divalent complexes of the type $(\pi - C_5 H_5)_2 ML$ where M = Mo or W and L = olefin or carbon monoxide; the complexes have basic properties.

Treatment of the dichlorides $(\pi - C_5 H_5)_2 MCl_2$ (I), M = Mo or W, with excess ethylaluminium dichloride in benzene or toluene results in a smooth reaction and the ethylene hydride cations $[(\pi - C_5 H_5)_2 MH(C_2 H_3 R)]^*$ (II) R = H, M = Mo or W may be readily isolated as their hexaflucrophosphate salts in ca. 50% yields. The infrared spectra of the complexes are consistent with the proposed structures, and their ¹H NMR spectra show signals at $\tau 15.0$ (R = H, M = Mo) and $\tau 16.58$ (R = H, M = W) characteristic of protons directly bound to a transition metal.

In the reaction of the dichloride $(\pi - C_5 H_5)_2 \operatorname{MoCl}_2$ with ethylaluminium dichloride, the neutral complex $(\pi - C_5 H_5)_2 \operatorname{MoCl}(C_2 H_5)$ is also formed and may be converted into complex (II) with R = H, M = Mo, by treatment with ethylaluminium dichloride in benzene or thallium tetrafluoroborate in acetone. Similarly, treatment of the dichloride (I), M = W with excess of isopropylmagnesium bromide in ether/benzene yields the propene analogue (II), R = Me, M = W, in 30% yield. The cations (II) are similar in behaviour to the trihydrides $[(\pi - C_5 H_5)_2 \operatorname{MH}_3]^+$ (M = Mo or W) insofar that treatment with base (potassium hydroxide, ca. 1 M) causes abstraction of a proton and the neutral olefin complexes $(\pi - C_5 H_5)_2 \operatorname{M}(C_2 H_3 R)$ (III) R = H, M = Mo and W; R = Me, M = W, are isolated in 90% yield. Tentative assignment of the C=C stretching frequency in the infrared may be made, and are as follows: R = H, M = Mo, $\nu(C=C)$ 1465 cm⁻¹; R = H, M = W, $\nu(C=C)$ 1430 cm⁻¹; R = Me, M = W, $\nu(C=C)$ 1450 cm⁻¹. The complexes (III) are readily reprotonated with aqueous hexafluorophosphoric acid, reforming the cations (II) quantitatively.

J. Organometal. Chem., 44 (1972)

This route to divalent compounds of the type $(\pi-C_5 H_5)_2 ML$ may be extended to the facile preparation of the recently-described¹ carbonyl $(\pi-C_5 H_5)_2 Mo(CO)$. The carbonyl hydride cations $[(\pi-C_5 H_5)_2 MoH(CO)]^+$ (IV) is readily prepared, as a yellow crystalline compound, in 80% yield by treatment of the amine hydride cation $[(\pi-C_5 H_5)_2 MoH(NH_2 CH_3)]^{+2}$ in acetone with carbon monoxide. On treatment with base, compound (IV) yields the neutral, divalent monocarbonyl $(\pi-C_5 H_5)_2 Mo(CO)$ in 80% yield $\nu(C=O)$ 1905 cm⁻¹, parent ion m/e 256 corresponding to $(\pi-C_5 H_5)_2$ ⁹⁸Mo(CO)⁺.

The olefin complexes (III) are thermally stable at room temperature, but decompose in vacuo at 156° (R = H, M = Mo), 176° (R = H, M = W) and 114° (R = Me, M = W). They are especially resistant to olefin displacement by other two-electron ligands for example, the ethylene complex (III) R = H, M = Mo is recovered unchanged from triphenylphosphine melts at 90° after 36 h. Reactions with methyl iodide indicate that oxidative addition occurs to give products of stoichiometry $[(\pi-C_5 H_5)_2 M(C_2 H_2 R)Me]^+ I^-$. However the olefin ligands in the cationic complexes (II) R = H, M = Mo and W; R = Me, M = W, complex (II) R = H, M = Mo, in refluxing acetone with carbon monoxide gives the corresponding carbonyl hydride (IV) R = H, M = Mo in good yield. The reaction with the tungsten analogue (II) R = H, M = W, proceeds much more slowly.

In contrast, treatment of complexes (II) R = H, M = Mo and W; R = Me, M = W, with triphenylphosphine in refluxing acetone causes an internal insertion reaction and the triphenylphosphine alkyl derivatives $[(\pi - C_5 H_5)_2 M(PPh_3)(CH_2 CH_2 R)]^+$ (V) R = H, M = Mo; R = Me, M = W are formed in good yield. It is interesting to note that the ¹H NMR spectrum of complex (V) R = Me, M = W, indicates that only the n-propyl isomer is formed.

REFERENCES

1 H.H. Brintzinger and J.L. Thomas, J. Amer. Chem. Soc., 94 (1972) 1386.

2 F.W.S. Benfield and M.L.H. Green, Chem. Commun., (1971) 1274.

J. Organometal. Chem., 44 (1972)